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Abstract-This paper is concerned with two-dimensional approximations of the three-dimensional
local problems of Caillerie [(1984). Math, Meth, Appl. Sci. 6, 159-191] and Kohn and Vogelius
[(1984). Int. J. Solids Structures 20, 333-350]. The solutions to these problems make it possible to
evaluate the effective stiffnesses of periodic plates. The Kirchhoff-type approximation results in the
formulae shown by Duvaut [1976. In Theoretical and Applied Mechanics (Edited by W. T. Koiter),
pp. 119-132. North-Holland, Amsterdam]. By imposing Hencky-Reissner-type constraints, one is
led to new formulae which have a wider range ofapplicability. The paper also discusses the formulae
which result from homogeneizing two-dimensional Kirchhoff's, Reissner-Hencky's and Reddy's
equations of plates with periodic structure.

I. INTRODUCTION

The asymptotic solution to the statical problem of periodic elastic plates is expressed in
terms of the sequence of auxiliary functions which are solutions to the local problems posed
by the three-dimensional rescaled cell of periodicity, cf. Parts I and II of this paper.
Difficulties that arise in finding these auxiliary functions justify attempts to simplify the
problem, e.g. by substituting the appropriate two-dimensional counterparts of the local
problems for the original three-dimensional formulations. In the case where the periodicity
cell has the shape of a plate, it is expedient to approximate the solutions to the local
problems just by means of the methods of modelling developed in the plate theory. Thus,
we can apply assumptions of the celebrated plate models of Kirchhoff, Hencky, Reissner
and many others. Since the local problems we are faced with are given in their primal
formulations, it was thought natural to apply these methods of the theory of plate behaviour
modelling which is based upon kinematical constraints (cf. Reissner, 1985; Reddy, 1990;
Lewinski, 1987). In Section 2 we prove that impositions of the Kirchhoff-type constraints
result in the formulae by Duvaut (1976), originally obtained via homogenizing the equa
tions of bending of periodic plates (cf. Diagram I). However, it occurs that our passage to
the formulae by Duvaut requires a new assumption concerning material properties. In this
way do we not only justify these formulae but also determine their range of applicability.
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Diagram 1. Under the assumptions formulated in Section 2, this diagram commutes.
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Diagram 2. This diagram does not commute.

The formulae obtained by Duvaut have been found by homogenizing two-dimensional
Kirchhoff equations. Similarly, one can homogenize Reissner-Hencky's equations (Section
3) or Reddy's equations (Section 4). On the other hand, the three-dimensional basic cell
problems can be simplified by Reissner-Hencky's and even by Reddy's methods of reduction
of the transverse dimension. These equations can then be transformed into Kirchhoff-type
equations by interrelating the averaged rotations CPo with the transverse deflection w,
according to the contraints CPo = - w.o' It is one of the purposes of this paper to report that
the above operations do not commute. In particular, the formulae following from the
homogenization of Reissner-Hencky's equations do not coincide with those that follow
from Reissner-Hencky's approximation of the three-dimensional basic cell problems (cf.
Diagram 2).

Because of great complexity of the problem, the evaluation of the approaches discussed
needs further detailed studies. A comparison study of Sections 6 and 7, concerning plates
with one-directional variation of stiffnesses, is a first stage of this analysis.

The denotations of boundary value problems [e.g. (PI~C)] are common for all parts of
this paper. The indices i,j, k, I, m, n takes values 1,2,3; the Greek indices IX, (3, )" 1-1, y, b,
a, p run over 1 and 2; the index e indicates that the quantity depends upon the small
parameter e; and the indices a, b, C, d assume values 1 and 3. Partial differentiation with
respect to Xi and Yi is denoted briefly by ( ),i and ( h, respectively. Summation conventions
are used as previously. Averages over Y ands!Jjj are respectively denoted by {.} and <.);
these parentheses are not used for any other meaning.

2. JUSTIFICATION OF DUVAurs FORMULAE FOR EFFECTIVE STIFFNESSES

The subject of consideration is a plate, symmetric with respect to its middle surface
X3 = 0 and made from an elastic non-homogeneous material, the properties of which vary
Z-periodically with respect to the in-plane variable. The faces of the plate are wavy surfaces
that also vary Z-periodically, Such a plate has been described at the beginning of Section 2
of Part II. In this paper, however, we focus our attention only on the bending response of
this plate. Moreover, we restrict our analysis to the plates such that

(i) their periodicity cells !!t can be viewed as plates, i.e. their in-plane dimensions are
much greater than their maximum thickness;

(ii) the quotients c1 = Cp°{J/CP 33 are constant.

In the following, our consideration will be based upon (Pc) and (9c) formulations. Since
the cells !!t and !Jjj are homothetic, assumption (i) implies that !Jjj also has the shape of a
plate. Moreover, condition (ii) implies that
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c.P == ~33.P/~3333
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is constant.
The main difficulty in evaluating the effective bending stiffnesses m~~ of the plate from

the (P&) problem, cf. eqn (51) of Part II (to obtain the stiffnesses of the original plate one
should take (; == (;0) is finding solutions to the three-dimensional basic cell problem (P!~c), cf.
Section of Part I (in the case considered, Y3 == YJ). Prior to further simplifications, it is
expedient to decompose these unknown auxiliary functions as follows:

(1)

The fields S(·fi)E W(<W) satisfy

(2)

for every WE W(<W), the fields 5(·,8) E W(<W) being solutions to the variational equation

(3)

for every WE W(<W).
Upon adding the above equations and considering the definition (60) from Part II of

tensor Cand equality (I), one comes back to the original equation (47) in Part I. In virtue
of assumption (ii), the CP!~c) problem possesses the following trivial solution

(4)

Thus the (P!~c) problem reduces here to solve the (i5?oc) problem. Note that in view of (i),
the (PI~c) problem can be interpreted as a bending problem for the initially stressed plate
UJI, with periodical boundary conditions at its lateral surface.

The quantities Y3CijaP represent these initial stresses. By virtue of this interpretation,
the solutions to the (PI~c) problem can be viewed as displacement fields in the interior of
the plate <Wand furthermore, can be approximated similarly as displacements of a Kirchhoff
thin plate. It will be convenient to assume a distribution of displacements according to a
Nordgren-like hypothesis (cf. Nordgren, 1971; Lewinski, 1987). Thus we postulate that
scalar functions X(.m E H;er( Y) exist, such that

e(·Pl - _Y X(ap) e(·Pl - X(·P) + lcul'(y )2X(·Pl.....,\ - 3 1,\ , ..... 3 - 2· 3 luI" (5)

The space H;er( Y) consists of the functions from H 2
( Y), such that their values and the

values of their first derivatives are equal at opposite sides of Y (cf. Duvaut, 1976). When
(afJ) is fixed, the function X(·,8J is the deflection of the middle plane of UJI. The test displace
ments, however, are assumed to obey the Kirchhoff constraints

(6)

On imposing constraints (5) and (6) on the (Pl~c) problem and rearranging appropriate
terms, one obtains

(7)

Let us define the bending stiffnesses of the rescaled cell as
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cry)

Dyb).l'(y) = f (Y3)2. Cyb).l'(y) dY3'

-c(y)

(8)

Integrating with respect to Y3 in eqn (7), one finds

(9)

where { . }denotes averaging over Y (cf. Section 4 ofPart I). Note that the bending stiffnesses
for a plate of thickness 2BC, as considered in the (Pc) problem, are given by

The stiffnesses of the original plate [from the (P) problem] are equal to Dyb«P(xIBo) since
BoY = Z.

Thus instead of the (PI~c) problem, the following two-dimensional problem should be
solved:

find X(<<Pl E H;er( Y) such that

(PPoc) ([DYb).I'(Y)xI~t) -Dyb«P(Y)]W1yb} = 0 (10)

for every W E H~r(Y).
The above problem coincides with the basic cell problem obtained by Duvaut (1976)

by homogenizing Kirchhoff's equations for thin periodic plates. Now insert the approximate
solution obtained for the (Pl~c) problem,

(11 )

into the definition of the bending stiffnesses [cf. eqns (51) of Part II, (55)4' (50), (51) of Part
I] of the plate from the (Pc) problem:

(12)

where t = ICW III YI. One is then led to

(13)

where the Cyb,P are the moduli of the generalized plane stress problem [cf. eqn (60) of Part
II]. Upon integrating with respect to Y3, introducing denotations (8) and using the relation
D = B30, we arrive at Duvaut's formula for the effective stiffnesses

(14)

for B= Bo, the above formula defines the stiffnesses of the original Z-periodic plate. Since the
variational equation (10) holds true for W = X(Gj1), the stiffnesses (14) possess the following
symmetries:

(15)

Moreover, the tensor (14) is positively definite, and hence the homogenized problem is still
elliptic (cf. Duvaut, 1976).

Duvaut's effective model for periodic plates can be directly obtained from the vari
ational equation (30) in Part 1. In the case of plates with periodically varying thickness,
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such a derivation has been presented by Kohn and Vogelius (1984). In the slightly more
general case considered here, this derivation proceeds as follows. The unknown dis
placements are assumed to obey the following constraints:

u~ = -BY3W,,+B2Y3X~r)W,lr'

U'3 = W-B 2[X<lr) + 1Cap(Y3)2Xr:~) - !clr (YJ)2]wJr' (16)

In the above formulae, the terms that do not contribute to the effective equations have been
omitted. The test functions V are assumed to obey Kirchhoff's constraints

(17)

Substitution of formulae (16) and (17) into eqn (30) of Part I results in the variational
equation

Dtlr fW,.lrV,yo dx = f(q*v-m:v,,) dx,

n n

(18)

where Dholr are given by eqns (14), while q* and m: have been defined by (54) of Part II.
The homogenized problem (Prom) consists of finding W E H~(n) such that eqn (18) holds for
every v E H~(n). This problem differs from the (j5~om) problem, elaborated on in Section 2
of Part II, in the definition of the stiffnesses which are now less exactly assessed.

Equation (16)1 does not include the last term of eqn (3.4)1 from Kohn and Vogelius
(1984). This term is redundant in the above approach since the virtual fields V obey eqns
(17). Although the constraints imposed on U' and V are quite different, the bilinear form
on the left-hand side ofeqn (18) is still symmetric, cr. eqns (15). The derivation of the (Prom)
problem might have started from assumptions (16) with the underlined terms omitted.
However, in that case the assumption of negligibility of stresses 0'33 should have been
additionally stipulated.

3. HOMOGENIZING REISSNER-HENCKY'S EQUATIONS OF PERIODIC PLATES IN BENDING

As in the previous section, we consider the bending problem of a symmetric Z-periodic
plate composed of identical segments, :Z. The bending problem of such a plate can be
approximated by Reissner-Hencky's plate model. This model can then be a departure point
for homogenization. This section is aimed at deriving the formulae for the effective stiffnesses
of the original Z-periodic plate in this way.

The bending and shearing stiffnesses of the original plate are given by

xj(X)

D"jlr(x) = f (X3)2 c"jlr (x, X3) dX3'

-X;(x)

xj(X)

H'P(x) = /( f C,3P3(X x ) dxz Z, 3 3,

-X;(x)

since here, xt = - x 3' The shear-correction factor /( can be assumed according to the
suggestions which can be found in papers concerning moderately thick plates. In the
transversely homogeneous case, /( = ~(1,0072)-1 ~ 0.827376 (cf. Ladeveze and Pecastaings,
1988; appropriate formulae for laminated plates can be found in Hinton and Owen, 1984).

According to Reissner-Hencky's approach, the deformations of the original plate
subjected to the loads pf± are determined by the fields (w, qJ = (qJ,)), representing the

SAS 27:9-G
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deflection and rotations of the transverse cross-sections of the plate. In the case of a clamped
edge considered here, the problem consists of finding (w, cp) E V1(Q) = Hb(Q) x (Hb(Q)]2
such that

(PHR)f(D1,lp(x)cp,l,pljJ'./1 +Hy(x)(CPa +w,a)( IjJp +v,II)] dx
n

= I(m;IjJ,+ qZV)dX, forevery(v,t/t)E VI(Q);
n

where

m; = xj(p;+ -p;-)(x,x)(G(X/cO))I j 2,

qZ = (Pf++pf-)(x,x)'(G(X/cO))I/2.

The stiffnesses Dz and Hz and the densities of loads pf±(x, .) and G('/co) are Z-periodic
functions. Using asymptotic homogenization, one can determine an efficient algorithm for
computing the displacements and stresses in such a plate. The original plate is considered
to be one from the family of cY-periodic plates with stiffnesses

h(xj,)

D~P,lp (~) = f (X3)2C~P,lp C~3i' ~) dX3'
-h(xf')

h(xje)

H'P (~) = K f C·
3p3 C~3i' ~) dX3'

-h(x/,)

(19)

For c = co, the stiffnesses Dz and fi and Hz and H coincide. Instead of one problem (PHR),

we consider a family of problems which consists of finding (w', cp') E VI (Q) such that

= f(m~IjJ.+q'V)dX' forevery(v,t/t)EV\(Q); (20)
n

where

m~ = h(n· (P; -P;)(x,~) [G(nJ2,
q' = (pj +pn(x,~){G(~)T2

Both problems, (PHR ) and (PHR), are elliptic (cf. Lewinski and Telega, 1988a; Telega and
Lewinski, 1988), and hence the homogenization formulae can be obtained by the standard
technique developed by Bensoussan et al. (1978) for elliptic systems. The basic cell problem
here splits into two independent local problems (cf. Lewinski and Telega, 1988a; Tadlaoui
and Tapiero, 1988):
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find y(YJ)E[H~er(YW such that
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find T(J) E H~er(Y) such that

where

H~er(Y) = {vEH1(Y)1 v assumes equal values at opposite sides of Y}.

(22)

The solutions of the above local problems exist and are defined up to additive constants.
Having solved the above problems, one can evaluate the effective stiffnesses

D'f!yJ = (~y {D'PUI'(y)[6~6~+ Y~r~)]},

HW = {H"P(Y)'[6$+TI~)]}' (23)

The homogenized problem consists of finding the fields (WO, lp0) E VI (0) such that the
variational equation of the form (20) holds, where the stiffnesses are constant and given by
eqns (23) and the loadings

m,(x) = {h(y)' (p: -p,-)(x,Y)· [G(y)]1/2}

ij(x) = (Cpt +P3)(X,y)' [G(y)]II2}

substitute for the loadings m~ and q'.

4. HOMOGENIZING REDDY'S EQUATIONS OF BENDING OF PERIODIC PLATES

The bending problem addressed in Section 3 can be dealt with in a similar manner but
within the framework of Reddy's (1984) improved version of Reissner-Hencky's plate
model. Below we shall not use the original Reddy formulation, but its refined formulation
in which the Reissnerian unknowns are involved (Lewinski, 1986). In this version, the
boundary value problem of the clamped eY-periodic transversely homogeneous plate con
sists of finding (w', lp') E H6(0) x [HMOW = V2(0) such that

+H'U (~) (<P:+~u)(t/J,+v,o)J dx = f[m~t/J,+q"v] dx for every (v, t/I)E V2(0). (24)
Q

The right-hand side of eqn (24) has been assumed to be in the same form as in the
(PHR ) problem. This form should be a little more complicated but this difference is ofminor
interest later on. Since the problem (PR ) is well-posed and elliptic (cf. Bielski and Telega,
1988), the conventional scheme of asymptotic homogenization can be applied. The auxiliary
basic cell problem is composed of two independent problems, each being composed of two
coupled variational equations.

The functions (K('P), L(oP»E Wper(Y) = [H~r(YW x H~r(Y) are solutions to
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b(K(oP), v) + e(v, L(OP») + {150PA!'vA,IJ = 0

e(K(oP), v) + d(L(OP) , V) = 0 for very (V,V)E Wper(Y).

The functions (M(OP1, Noli) E Wper( Y) are solutions to

(25)

where the bilinear forms are defined by

b(v, w) = H{15·PA!'(y)vo,pwA,!'},

e(v, w) = i4{15·P,\!'(y)w)!'vo,p},

d(u, v) = i4 {150PA!'(y )U,A!'V,.P}' (27)

Well-posedness of the above local problems is assured by arguments similar to that used
in the paper by Lewinski and Telega (1988b) concerning the homogenization of the thin shell
equations. Having found the solutions of the problems (P\o~), IY. = 1,2, one can determine the
following auxiliary tensor fields:

A ~PA!' = 150Pby (y)[Mo~ +Kg:)]

Aor!' = 15·PbY(y)~i~)

A°lAI' = il150Pby (y) [KJ1:) + LI~:)]

A"/AI' = il150Pby (y)[ot o~ + Mg:) + NI~:)]

and with their help, one can find the stiffness tensors

The homogenized constitutive relationships are of the form

MOP - DoPAI' m ° + EOPAI' 110
h - Rh 'Y A.I' Rh rAI"

SI/ = FfIj,AI' cpf,1' + Gei/J/-I' f..lfl"

Qi. = HnW,~ + cp~),

(28)

(29)

(30)

where f..lfl' = cpf,1' + w.31' ; cp°and WO being the first terms of the asymptotic expansions of the
fields ql, w'. The homogenized problem consists of finding (wo, cpO)E V 2(Q) such that

f[MhP",o,p + Si.P(",•. P+v,./i) +Qh(V., +"',)] dx = f[m,"'o+tJV] dx
n n

for every (V,l/!)E V2(Q). (31)

It is worth emphasizing that the homogenized relations (30) 1,2 are coupled, while the initial
relations are uncoupled, as follows from the form of the left hand-side of eqn (24).

5. A NEW HOMOGENIZED MODEL FOR PLATES WITH PERIODIC STRUCTURE

The approximations that have led us to formulae (10) and (14) by Duvaut (1976)
can be applied only when the periodicity cell has the shape of a thin plate. Only then can
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Kirchhoff's assumptions model the plate behaviour correctly. Thus, a natural way of
relaxing the previous approximations is to substitute Hencky's constraints for the previously
applied Kirchhoff assumptions. Such an approach could be justified if the celllfJl has the
shape of a moderately thick plate. It is expedient to impose the following constraints upon
the unknown local fields g(.m, cf. the (PI~c) problem,

e(./i) _y \TI('/i)+lca~(y )3'P('/i)
~,l - 3 T ,l 6 3 ~laA'

3~'/i) = w(·/i) -1Ca~(Y3)2 'P~lt), (32)

where 'P(./i) = ('Pi·/i) = 'PiP.)) and W(·P) = W(p·) are Y-periodic functions. We assumed
additionally that Cb~ is constant. Thus, the solution of the (PI~c) problem is assumed to be
of the form (1) along with (4) and (32). We impose the Hencky-type constraints

w. = Y3 0l/J.(y), W3 = v(y)

on the test functions w, where l/J., vEH~er(Y)'
Substituting (32) and (20) into eqn (2), we find

(33)

for every v, l/J. E H~er(Y)' The underlined term of higher order will be discarded. Note that
the above equation involves only first derivatives of the functions 'Pi'P) and W(·/i), hence
they may be sought in the space H~er(Y) [we can forget about formulae (32) to which the
second derivatives of 'Pi·/i) contribute]. Upon integration with respect to Y3, one is led to
the local problem:

find ('P('P), W(·P)) E [H~er( Y)F x H~er( Y) such that

(35)

where R = HIBo; H being defined by (19h where a shear correction factor has been
introduced.

The above problem possesses a mathematical form similar to the form of the (PHR )

problem (Section 3) and with the help of this fact, one can corroborate that the solution to
(P~c) exists and is determined up to additive constants (which can depend upon x). Note
the essential difference between the local problems discussed in Section 3 and herein. The
problems (PI~I[R) and (PI~I[R) are decoupled while eqn (35) cannot be split into two inde
pendent variational equations.

Having found the solution to the (P~c) problem, we determine the fields (32), add them
to (4) and insert them into definition (12) of Dhom ' Thus, we find a new approximate formula
for the effective bending stiffnesses

(36)

where D = B30. The similarity of the above definitions and (23) is worth emphasizing. Note
that the fields wt·/i) do not enter (36) explicitly. Yet note that formula (36) is not symmetric.
Just upon symmetrization of (36), the wt·/i) fields will enter the definition of Dzh ' To find
this, let us substitute", = 'P(ap) and v = wtap

) into eqn (35), multiply both sides of this
identity by B

3
, make use of the relations D = B30, H = BoR and add to definition (36) to

obtain a definition for DZh in a new form :
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from which the symmetries of the type (15) are readily seen. Moreover, formula (37) makes
it possible to quite easily prove that the tensor Doh is positively definite, which is the key to
the proof of ellipticity of the homogenized problem. The proof is similar to the proof of
positive definiteness of the tensor A" cf. Section 5, Step 2, Part I.

6. EFFECTIVE BENDING STIFFNESSES OF PLATES PERIODIC IN ONE DIRECTION

Consider the plate described in Section 2 of Part II, such that hey) = h(YI) =
h+(YI) = -h-(YI),Yl = xde. Let Y 1 = a andeo = e to simplify notation. The moduli do not
vary in the Y2 direction, CUkl = C ijkl(Y3, Yl); CUkl(Y3,') are a-periodic functions. Moreover,
CUkl(Y3,YI) = CUkl( - Y3, Y d· As in Section 2 of Part II, we restrict our considerations to the
case in which X3 = const are planes of material symmetry, i.e. C· 3P, = C333

y = O. Moreover,
we assume that x 1 and x 2 are orthotropy axes of the material, viz. ell 12 = C2221 = O.

In the case considered, the two-dimensional local problems reduce to one-dimensional
ones and hence may be solved analytically, and the effective bending stiffnesses can be
found in closed forms.

6.1. Formulae due to Duvaut based upon homogenization of Kirchhoff's equations
Effective bending stiffnesses of the plate considered have been found by Duvaut (1976).

They can be written as

(38)

where

(/

{f} = ~ ffey I) dy l'

o

The stiffnesses D'PA~(xde) are given by (19)1' They are ea-periodic functions in XI, with the
function D'PA!' ( .) being a-periodic.

6.2. Formulae based on homogenizing Reissner-Hencky's equations
The local problems (P\o~R), C( = 1,2, can be solved analytically. Omitting the derivation,

we report here only the final results:

D1111 =Dh 111 , D1212={(DI212)-I}-1

D1122 = Dh 122, D1112 = D1222 = 0, D1222 = D1;222.

The shearing stiffnesses are

(39)

(40)

Note that formulae (38) and (39) differ considerably in the definitions of the effective
torsional stiffness.
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6.3. Formulae based on homogenizing Reddy's equations
The assumption of periodicity in one direction considerably simplifies the (Pfo~) prob

lems, a = 1,2, so that their solutions can be explicitly given. For the sake of brevity, only
the final results for effective stiffnesses are reported:

DIf"A1' = D"//"I' given by eqns (39) (not in general),

Ek~'2 = is[{(DI212)-I}-I_{DI212}] = Fk~'2,

G"iff/l = i4 D~1!/I (do not sum over a or /3),

Gk~12 = i4[{DI212}+Ek~12],

H,,!i = {H,/I}. (41)

The other components are equal to the components given above, according to the rules of
symmetry, or they vanish.

6.4. Formulae based on Caillerie-Kohn-Vogelius' approach
The key problem is to find solutions of the (PI~c) problem, cf. Section 5, eqn (47), Part

I. Due to restrictions introduced in this section, the vector functions :3(,/1) do not depend
upon Y2 here but do possess a special form:

(42)

Thus, the (PI~J problem splits into two independent problems posed on the plane domain,
still denoted by qIj and parametrized by (Ya), a = 1,3, coordinates. Let

Vper(qIj) = {v E HI (qIj) Iv assumes equal values at opposite sides of qIj}.

The functions 3~") E Vper(qIj) satisfy

(43)

for every WaE Vper(qIj) (do not sum over a) where a,b, c,d = 1,3.
The function 3~12)E Vper(qIj) satisfies

(44)

for every WE Vper(qIj), a, C = 1, 3; where <.) implies averaging over the two-dimensional
domain qIj. Having found the functions '2a,,), 3i'2) (which can be determined up to additive
constants), one can evaluate the effective stiffnesses with the help of the formulae

D~III = <Y3(CII13Hi)+C"333W)+Y3CIIII)

D~122 = <Y3(CII13\f12)+CI333~U)+Y3C"22)

D;222 = <Y3 (C2211 3\T?) + C22333~fP +Y3 C2222 )

D~ 212 = <Y3(C I212 (3H?) + Y3)' (45)

Other stiffnesses can be found according to symmetry relations of type (15). The
stiffnesses are zero when the sum of the indices is an odd number. In general, the (Pl;~'»)

and (Pl~~12»)problems are analytically intractable, and hence only numerical solutions would
be available. When the properties of the material differ considerably and discontinuously,
the correct numerical solution could then be difficult to find. If one uses finite element codes,
special attention should be focused on the appropriate choice of mesh; if available, adaptive
techniques can be helpful (cf. Bends0e and Kikuchi, 1988). Simplifications similar to (42)
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have been disclosed previously by Kohn and Vogelius (1984) for plates with discontinuously
varying thickness.

6.5. Formulae according to Section 5
Our first aim is to find the functions 'PafJ) and W<a/i) which solve the (P{{,c) problem. We

conjecture that these functions will be independent ofY2' The differential equations following
from eqn (35) assume the form

where

Mll(a/i) = 15 1111 'P\if) +15 lla/i,

M I2(afJ) = 151212'P~if) +15 12'/1,

QI(afJ) = H" (WI(rfJ) +'P\a/i»). (47)

The above formulae are valid provided that the functions defining the stiffnesses are
differentiable. The periodicity conditions which follow from eqn (35) assume the form

(48)

By integrating the first two equations (46) and using the periodicity conditions (49h2' one
finds

The above result enables us to find the effective stiffnesses IJ;i,/i/i. It occurs that

D~h/i/i = Di,a/i/i (do not sum over IX or [3),

(50)

(51 )

where Di,afJ/i have been defined by eqns (38). Moreover, D;;22 = D;~ II = O. Thus, only the
stiffness D;h212 has not yet been found. Since

D I212 = {D I2l2 (1 + 'P(I 2»)}zh 211 , (52)

the problem reduces to finding the function 'P~12) EH~r(O, a) which fulfils the variational
equation

or, in the case where the stiffnesses are of the Cl(O, a) class, the differential equation (46h
augmented with periodicity conditions (49). In the general case, the solution cannot be
given explicitly.
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7. ANALYSIS OF EFFECTIVE BENDING STIFFNESSES OF PLATES OF RAPIDLY

AND PERIODICALLY VARYING THICKNESS

The method outlined in Part I of this paper constructs a path from the original, highly
complicated problem (P) to a sequence of simpler problems, mainly to (Phom); viz. to
Kirchhoff's problem for a homogenized thin plate. This method (developed by Caillerie,
1984) is based upon very weak assumptions and hence can be treated as being exact, or as
a method of reference. Other methods, for instance those described in Sections 2 and 5
which also result in Kirchhoff plate models, provide approximate values of the effective
stiffnesses. The method in Section 3 results in a model of a moderately thick plate, but we
can impose the constraints If'0 = - Vwo on the equations of this model, leading us again to
Kirchhoff's model. Similarly, Reddy's equations can be transformed into the thin plate
formulation. Thus for the same composite plate one can obtain various approximate values
of the effective stiffnesses.

For the sake of simplicity, we shall analyze below the distribution of these values in
the special case of isotropic homogeneous plates of rapidly varying thickness (see Fig. 1).
The comparison analysis below can be treated as an extension of the analysis carried out
by Kohn and Vogelius (1984). The stiffnesses will be found using the methods set up in
Table 1. Results (D) can be obtained via the algorithm described in Section 6.4 or by solving
the (Pl~~) problem, cf. Section 5 of Part II, as done by Kohn and Vogelius (1984).

Table 1.

Denotation of Range of
Symbol Model bending stiffnesses applicability

A The Duvaut approach: homogenizing IY;'pA' jc+ -c-I « min r,
Kirchhoff's equations

B Reissner-Hencky's plate after D,//A' -romin r, < Ic+-c-I
homogenization-Section 3 < !min Y,

C Reddy's plate after homogenization- U/;·· = utA' as in (8)
Section 4

D The model ofCaillerie-Kohn-Vogelius, cf. D,PA, arbitrary shapes of :rhom

Section 5 from Part I and Section 4 from dim (2') « dim (0)
Part II

E The model proposed in Section 5 U PA, as in (8),h

F The model based on homogenizing the Da.jJi...;t Ic+ -c-I» max r,",
boundary, cf. Kohn and Vogelius (1984)

G The effective model based on formulae due D'PA, as in (A)Kh

to K~czkowski, cf. Section 7

HA The effective models based on Huber's Up" reinforced plates or platesHom

Ho formulae eqns (I) from Part I stiffened by ribs
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Table 2.

Dimensions

No. of Slenderness
table b/a 1®'I/a2 e,/a e2/a ('2/ C I A

3a 1/2 I 1/3 2/3 2 I
3b 3/4 I 1/3 I 3 1
3e 1/2 I 1/4 3/4 3 I
3d 3/4 I 1/4 5/4 5 1
4a 1/2 1/3 2/15 3/15 1.5 3
4b 1/2 1/3 1/9 2/9 2 3
4e 1/2 1/3 1/12 3/12 3 3
4d 3/4 1/3 8/54 12/54 1.5 3
4e 3/4 1/3 4/30 8/30 2 3
4f 3/4 1/3 4/36 12/36 3 3
5a 1/2 1/8 2/40 3/40 1.5 8
5b 1/2 1/8 1/24 2/24 2 8
5e 1/2 1/8 1/32 3/32 3 8
5d 3/4 1/8 2/36 3/36 1.5 8
5e 3/4 1/8 1/20 2/20 2 8
5f 3/4 1/8 4/96 12/96 3 8

Table 3a.

Model

A B(C) D E F G H" H"

15'"' 0.047 0.047 0.031 0.047 0.027 0.047 0.047 0.047
15'122 0.012 0.012 0.008 0.012 0.007 0.012 0.018 0.0148
D2222 0.114 0.114 0.113 0.114 0.113 0.1184 0.114 0.113
15 1212 0.044 0.0176 O.oI 7 0.0210 0.010 0.0176 0.0137 0.0111

Table 3b.

Model

A B(e) D E F G H" H"

15"" 0.035 0.035 0.028 0.035 0.026 0.035 0.035 0.028
15'122 0.009 0.009 0.007 0.009 0.007 0.009 0.0202 0.018
D2222 0.187 0.187 0.187 0.187 0.187 0.197 0.187 0.187
15 1212 0.074 0.013 0.012 0.0144 0.010 0.0130 0.015 0.0136

Table 3e.

Model

A B(e) D E F G H" H"

15'"' 0.0214 0.0214 0.014 0.0214 0.011 0.0214 0.0214 0.014
15'122 0.005 0.005 0.004 0.005 0.003 0.005 0.014 0.0113
D2222 0.147 0.147 0.147 0.147 0.147 0.155 0.147 0.147
jj 1212 0.0583 0.00804 O.oII 0.0132 0.004 0.008 0.0105 0.00851

Table 3d.

Model

A B(e) D E F G H" H"

15"" 0.015 0.015 0.012 O.oI5 0.011 O.oI5 O.oI5 0.012
15'122 0.004 0.004 0.003 0.004 0.003 0.004 0.0177 0.0158
D2222 0.334 0.334 0.334 0.334 0.334 0.355 0.334 0.334
15 1212 0.133 0.00554 0.006 0.00706 0.004 0.00554 0.0133 0.01187
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Table 4.

a A B(C) E G HA

1'5" 11 2.6 E-3 2.6 E-3 2.6 E-3 2.6 E-3 2.6 E-3
1'5 1122 6.5 E-4 6.5 E-4 6.5 E-4 6.5 E-4 7.67 E-4
1'5 2222 3.62 E-3 3.62 E-3 3.62 E-3 3.69 E-3 3.62 E-3
1'5 1212 1.383 E-4 9.75 E-4 1.204 E-3 9.75 E-4 5.752 E-4

b

1'5"" 1.734 E-3 1.734 E-3 1.734 E-3 1.734 E-3 1.734 E-3
1'5 1122 4.335 E-4 4.335 E-4 4.335 E-4 4.335 E-4 6.765 E-4
1'5 2222 4.223 E-3 4.223 E-3 4.223 E-3 4.389 E-3 4.223 E-3
1'5 1212 1.646 E-3 6.503 E-4 1.166 E-3 6.503 E-4 5.074 E-4

c

1'5"" 7.936 E-4 7.936 E-4 7.936 E-4 7.936 E-4 7.936 E-4
1'5 1122 1.984 E-4 1.984 E-4 1.984 E-4 1.984 E-4 5.346 E-4
1'5 2222 5.452 E-3 5.452 E-3 5.452 E-3 5.763 E-3 5.452 E-4
1'5 1212 2.161 E-3 2.976 E-4 1.141 E-3 2.976 E-4 4.01 E-4

d

1'5"" 2.805 E-3 2.805 E-3 2.805 E-3 2.805 E-3 2.805 E-3
1'5 1122 7.013 E-4 7.013 E-4 7.013 E-4 7.013 E-4 7.98 E-4
1'5 2222 3.630 E-3 3.630 E-3 3.630 E-3 3.685 E-3 3.630 E-3
1'5 1212 1.382 E-3 1.052 E-4 1.162 E-3 1.052 E-3 5.983 E-4

e

Li"" 2.158 E-3 2.158 E-3 2.158 E-3 2.158 E-3 2.158 E-3
1'5" 22 5.394 E-4 5.394 E-4 5.395 E-4 5.394 E-4 7.773 E-4
1'5 2222 4.480 E-3 4.480 E-3 4.480 E-3 4.635 E-3 4.480 E-3
1'5 1212 1.738 E-3 8.091 E-4 1.028 E-3 8.091 E-4 5.829 E-4

f

1'5"" 1.285 E-3 1.285 E-3 1.285 E-3 1.285 E-3 1.285 E-3
Li 1122 3.212 E-4 3.212 E-4 3.212 E-4 3.212 E-4 7.465 E-4
Li2222 6.938 E-3 6.938 E-3 6.938 E-3 7.315 E-3 6.938 E-3
Li 12 12 2.743 E-3 4.818 E-4 8.038 E-4 4.818 E-4 5.598 E-4

Apart from the approaches discussed previously, we shall also refer to the results
reported by Kohn and Vogelius (1984), obtained by homogenizing the boundary (symbol
F in Table 1). Moreover, Huber's formulae, eqn (1) in Part I, will be used to assess the
stiffnesses D 1122 and D 1212 in terms ofD····, the latter being evaluated according to formulae
(38) by Duvaut (1976) (the same values are predicted by homogenizing Reissner-Hencky's
equations), in which case the approach is called (HA), or evaluated according to formulae
(45), in which case the approach is called (HD). We shall also refer to the formulae due to
K~czkowski (1980) (symbol G in Table 1), according to which the stiffnesses DW I

, DW'
are evaluated by eqns (38)],3' Dl~12 according to (39)2 and Dn22 = {D 2222

}.

The non-dimensional values of the effective stiffnesses jj'fJA~ = D'fJA~/Ea3e3 of plates
with various shape of periodicity cells (cf. Table 2) are set up in Tables 3a-5f; E is Young's
modulus and Poisson's ratio is v = 0.25. The mean thickness ii and slenderness of the cell
qIj are defined by

(54)

where Iqljl = a • ii is the volume of qIj (per unit depth).
Tables 3a-d present the effective stiffnesses of the plates, the cells of which are such

that A. = 1. The dimensions of the cell qIj lie within the range of applicability of the (D)
method. The other results are reported for comparison.
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Table 5.

a A B(C) E G H A

ti" II 1.371 E--4 1.371 E--4 1.371 £--4 1.371 £--4 1.371 E--4
til 122 3.423 £-5 3.423 E-5 3.423 £-5 3.423 E-5 4.044 £-5
ti

2222 1.909 E--4 1.909 £--4 1.909 £--4 1.945 £--4 1.909 E--4
ti '212 7.292 £-5 5.143 £-5 6.926 £-5 5.143 E-5 3.033 E-5

b

till" 9.144 E-5 9.144 E-5 9.144 E-5 9.144 E-5 9.144 £-5
15"22 2.286 E-5 2.286 £-5 2.286 E-5 2.286 E-5 3.570 E-5
ti

2222 2.230 E--4 2.230 £-4 2.230 E--4 2.315 E--4 2.230 £-4
ti

1212 8.681 E-5 3.429 E-5 7.684 £-5 3.429 E-5 2.677 E-5

c

ti"" 4.184 E-5 4.184 E-5 4.184 E-5 4.184 E-5 4.184E-5
ti 1122 1.046 E-5 1.046 E-5 1.046 E-5 1.046 E-5 2.818 E-5
ti

2222 2.874 £--4 2.874 E--4 2.874 E--4 3.037 E--4 2.874 £--4
ti

l212 1.139 E--4 1.569 E-5 9.219 E-5 1.569 E--4 2.114E-5

d

ti"ll 1.479 E--4 1.479 E--4 1.479 E--4 1.479 E--4 1.479 E--4
15 1122 3.698 E-5 3.698 E-5 3.698 E-5 3.698 E-5 4.210 £-5
15 2222 1.914 E--4 1.914 £--4 1.914 E--4 1.943 E--4 1.914 £--4
15 1212 7.287 £-5 5.549 £-5 6.736 £-5 5.549 E-5 3.155 E-5

e

ti
1111 1.138 E--4 1.138 E-4 1.138 E--4 1.138 E--4 1.138 E4

ti 1122 2.845 E-5 2.845 E-5 2.845 E5 2.845 E-5 4.10 E-5
15 2222 2.363 E--4 2.363 E--4 2.363 E--4 2.445 E-4 2.363 E4
15 1211 9.167 £-5 4.267 E-5 7.163 £-5 4.267 E-5 3.075 E-5

f

till II 6.775 £-5 6.775 E-5 6.775 E-5 6.775 E-5 6.775 E-5
ti

1122 1.694 E-5 1.694 E-5 1.694 E-5 1.694 E-5 3.936 E-5
ti

2222 3.659 £--4 3.659 E--4 3.659 E--4 3.859 E--4 3.659 E--4
15 1212 1.447 E--4 2.541 E-5 8.101 E-5 2.541 £-5 2.952 E-5

Table 4 displays the values of effective stiffnesses [according to methods (A), (B, C),
(E), (G) and (HA») of plates whose cells have A. = 3. The cell !Jjj is not sufficiently slender
for the application of methods (A), (B), (E) and (G) to be fully justified.

Table 5 shows the values of the effective stiffnesses such that A. = 8 according to
methods (A), (B, C), (E), (G), (HA). In this case, application of methods (B, C), (E), (G)
and (HA) is justified.

The greatest discrepancies can be observed in evaluating the torsional stiffnesses D 1212.

The plots in Figs 2, 3 can help us to compare the values of D1212 according to methods (A),
(B, C) and (E).

The results obtained make it possible to formulate the following conclusions.

(a) In the case where A. = I, the effective stiffnesses should be computed by model (D).
This case is not applicable to models (A), (B, C) and (E). Nonetheless, the latter models
approximate the stiffnesses Daa

f3f3 quite well-they estimate the relevant values obtained by
model (D) from above. However, model (B, C) offers surprisingly good evaluation of the
torsional stiffness D 1212, while model (A) considerably overestimates this stiffness. Model
(F) underestimates the stiffnesses D 1111, D 1122 and D 1212 in comparison with model (D).

(b) The results for A. > I due to model (D) are unfortunately unavailable but as a
reference, the results according model (E) have been taken. As A. increases, the results D~ 212

tend to D~112 from above. This corroborates that Duvaut's formulae are applicable only
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when cells qy are longitudinally slender. On the other hand, the values D1212 underestimate
the values D1f 12 and do not tend to them as Aincreases.

(c) Huber's formulae considerably overestimate the stiffness D \122.

(d) Kqczkowski's formulae overestimate the stiffness D 2222
•

8. FINAL REMARKS

Of all the equations derived and discussed in the present paper, the formulae for the
effective stiffnesses, which enter the primal homogenized (Phom) problem, may merit special
attention since they are of vivid interest for engineering practice. Although their asymptotic
derivation can be viewed as formal, the present author shares the view ofKohn and Vogelius
(1984) and Kalamkarov et al. (1987), that the formulae derived in Section of Part I (and
discussed after) are correct. We feel confident that there is now no use in performing the
smearing-out process in another manner. In the Caillerie-type approach discussed in the
present paper, the effective model of a periodic plate is rationally and uniquely defined and,
just contrary to the outdated opinion of Boot and Moore (1988), is not "an expedient which
inevitably raises questions of validity". Thus, let it be stressed here that it is not a question
of how to define the effective stiffnesses, but how to simplify the computations. In our
opinion, the two-dimensional approximation proposed in Section 5 provides such a sim
plification. However, this approximation can only be applied to periodic plates whose
periodicity cells also have the shapes of plates. When these periodicity cells are very thin
plates, one can approximate the overall stiffnesses by using the hitherto existing formulae
of Duvaut (1976). In the general case, one should compute the stiffness following the
Galerkin-type algorithm described in Section 6 of Part II. Current computer programmes
make it possible to implement this algorithm, thus enabling the variations of material and
geometrical properties to be correctly taken into account.
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